The Invading Sea
  • News
  • Commentary
  • Multimedia
  • Public opinion
  • About
No Result
View All Result
The Invading Sea
  • News
  • Commentary
  • Multimedia
  • Public opinion
  • About
No Result
View All Result
The Invading Sea
No Result
View All Result

FSU research improves hurricane intensity forecasting

The research incorporating is the effects of sea spray into models that predict hurricane behavior

by Bill Wellock
October 25, 2024
in Commentary
0

By Bill Wellock, Florida State University News

Hurricanes are massive, complex systems that can span hundreds of miles as they swirl around the low pressure of the storm’s eye. In such a complicated situation, predicting how powerful a hurricane will grow is a difficult undertaking.

A new collaboration between researchers in South Korea and Florida State University is improving hurricane forecasting by incorporating the effects of sea spray into the models that predict hurricane behavior. The work was published in Environmental Research Letters.

“We know forecasts predicting hurricane tracks are pretty good most of the time, but the intensity forecasts have traditionally not been as good, and we’re trying to figure out why,” said Mark Bourassa, a professor in the FSU Department of Earth, Ocean and Atmospheric Science and paper co-author.

Mark Bourassa, a professor in the FSU Department of Earth, Ocean and Atmospheric Science and the Center for Ocean-Atmospheric Prediction Studies. (Devin Bittner/FSU College of Arts and Sciences)
Mark Bourassa, a professor in the FSU Department of Earth, Ocean and Atmospheric Science and the Center for Ocean-Atmospheric Prediction Studies. (Devin Bittner/FSU College of Arts and Sciences)

As hurricanes churn through the ocean, wind and waves at the surface disperse droplets of water into the air, known as sea spray. As these droplets of warm water evaporate, they cool while releasing heat and moisture into the atmosphere near the ocean surface. The heat lifts more moisture-laden air, a process that powers hurricanes.

The researchers looked at data from probes dropped by hurricane hunter airplanes and found there was a lot more thermal energy being transferred from the ocean into the air than they expected. That pointed to a potentially overlooked feature that was influencing storm intensity.

Previous studies into the role of sea spray in hurricane intensification relied on proxy measurements such as wind speed to approximate how sea spray reduces drag, which also increases the intensity in modeled storms. But those simplifications didn’t capture how spray increased the energy fueling storms, especially for wind speeds greater than 20 meters per second.

The weather model used by South Korean and FSU researchers included a wave model to provide greater accuracy for sea spray production and incorporated changes in the heat and moisture transferred to the atmosphere.

“It’s an amazing amount of energy that we’ve been missing in these storms,” Bourassa said. “When we incorporated data showing how sea spray changes the flow of heat and moisture in a storm, we found that intensity forecasts were remarkably better than they were when we ran the same model without that single change.”

To validate their findings, the research team analyzed four major Atlantic Ocean hurricanes — Ida (2021), Harvey (2017), Michael (2018), and Ian (2022) — which caused significant damage in the United States. With the help of colleagues in Korea, they also examined four Pacific Ocean typhoons.

Existing science is typically reliable at predicting a hurricane’s path, but meteorologists want to refine their modeling to better understand and forecast the intensity of storms. This research suggests that operational models could be modified to provide better intensity forecasts.

Future research motivated by this paper could focus on rapid intensification of storms, Bourassa said, helping to add another piece to the complicated puzzle that is hurricane forecasting.

Research team members from FSU were Chaehyeon Chelsea Nam, an assistant professor in the Department of Earth, Ocean and Atmospheric Science; DW Shin and Steven Cocke, research scientists at the FSU Center for Ocean-Atmospheric Prediction Studies; Sinil Yang of the APEC Climate Center, Republic of Korea; Dong-Hyun Cha of Ulsan National Institute of Science and Technology; and Baek-Min Kim of Pukyong National University, Republic of Korea.

This research was supported by the Korea Hydrographic and Oceanographic Agency, the Ministry of Oceans and Fisheries of Korea, the Korea Environment Industry & Technology Institute, Korea Ministry of Environment, the National Research Foundation of Korea, and the Korea Meteorological Administration Research and Development Program.

Banner image: Hurricane Ian at peak intensity while approaching southwest Florida on Sept. 28, 2022. (Geostationary Operational Environmental Satellite Program, CC BY-SA 4.0, via Wikimedia Commons). This piece was originally published at https://news.fsu.edu/news/science-technology/2024/10/17/fsu-research-improves-hurricane-intensity-forecasting/.

Sign up for The Invading Sea newsletter by visiting here. If you are interested in submitting an opinion piece to The Invading Sea, email Editor Nathan Crabbe at ncrabbe@fau.edu. 

Tags: Florida State Universityhurricane forecastinghurricanesrapid intensificationsea spray
Previous Post

Climate can’t be ignored this election

Next Post

Debunking the horror: To oceans, sharks are vital, not villains

Next Post
A great white shark (iStock image)

Debunking the horror: To oceans, sharks are vital, not villains

Twitter Facebook Instagram Youtube

About this website

The Invading Sea is a nonpartisan source for news, commentary and educational content about climate change and other environmental issues affecting Florida. The site is managed by Florida Atlantic University’s Center for Environmental Studies in the Charles E. Schmidt College of Science.

 

 

Sign up for The Invading Sea newsletter

Sign up to receive the latest climate change news and commentary in your email inbox by visiting here.

Donate to The Invading Sea

We are seeking continuing support for the website and its staff. Click here to learn more and donate.

Calendar of past posts

October 2024
S M T W T F S
 12345
6789101112
13141516171819
20212223242526
2728293031  
« Sep   Nov »

© 2022 The Invading Sea

No Result
View All Result
  • News
  • Commentary
  • Multimedia
  • Public opinion
  • About

© 2022 The Invading Sea

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In