The Invading Sea
  • News
  • Commentary
  • Multimedia
  • Public opinion
  • About
No Result
View All Result
The Invading Sea
  • News
  • Commentary
  • Multimedia
  • Public opinion
  • About
No Result
View All Result
The Invading Sea
No Result
View All Result

Warming of Antarctic deep-sea waters contributes to sea-level rise in North Atlantic, study finds

A critical piece of Earth’s global system of ocean currents has weakened by about 12% over the past two decades

by Diana Udel
May 1, 2024
in News
0

By Diana Udel, University of Miami

A new study published in the journal Nature Geoscience led by scientists at University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, and the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory, found that human-induced environmental changes around Antarctica are contributing to sea-level rise in the North Atlantic.

The research team analyzed two decades of deep sea oceanographic data collected by observational mooring programs to show that a critical piece of Earth’s global system of ocean currents in the North Atlantic has weakened by about 12% over the past two decades.

“Although these regions are tens of thousands of miles away from each other and abyssal areas are a few miles below the ocean surface, our results reinforce the notion that even the most remote areas of the world’s oceans are not untouched by human activity,” said the study’s lead author Tiago Biló, an assistant scientist at the Rosenstiel School’s NOAA Cooperative Institute for Marine and Atmospheric Studies.

Scientists analyzed data from several observational programs to study changes over time in a cold, dense, and deep water mass located at depths greater than 4,000 meters (2.5 miles) below the ocean surface that flow from the Southern Ocean northward and eventually upwells to shallower depths in other parts of the global ocean such as the North Atlantic. (iStock image)
Scientists analyzed data from several observational programs to study changes over time in a cold, dense, and deep water mass located at depths greater than 4,000 meters (2.5 miles) below the ocean surface that flow from the Southern Ocean northward and eventually upwells to shallower depths in other parts of the global ocean such as the North Atlantic. (iStock image)

As part of the NOAA-funded project DeepT (Innovative analysis of deep and abyssal temperatures from bottom-moored instrument), the scientists analyzed data from several observational programs to study changes over time in a cold, dense, and deep water mass located at depths greater than 4,000 meters (2.5 miles) below the ocean surface that flow from the Southern Ocean northward and eventually upwells to shallower depths in other parts of the global ocean such as the North Atlantic.

This shrinking deep-ocean branch — that scientists call the abyssal limb – is part of the Atlantic Meridional Overturning Circulation (AMOC), a three-dimensional system of ocean currents that act as a “conveyer belt” to distribute heat, nutrients, and carbon dioxide across the world’s oceans.

This near-bottom branch is comprised of Antarctic bottom water, which forms from the cooling of seawater in the Southern Ocean around Antarctica during winter months. Among the different formation mechanisms of this bottom water, perhaps the most important is the so-called brine rejection, a process that occurs when salty water freezes.

As sea ice forms, it releases salt into the surrounding water, increasing its density. This dense water sinks to the ocean floor, creating a cold, dense water layer that spreads northward to fill all three ocean basins – the Indian, Pacific and Atlantic oceans. During the 21st century, the researchers observed that the flow of this Antarctic layer across 16°N latitude in the Atlantic had slowed down, reducing the inflow of cold waters to higher latitudes, and leading to warming of waters in the deep ocean.

“The areas affected by this warming spans thousands of miles in the north-south and east-west directions between 4,000- and 6,000-meters of depth,” said William Johns, a co-author and professor of ocean sciences at the Rosenstiel School. “As a result, there is a significant increase in the abyssal ocean heat content, contributing to local sea-level rise due to the thermal expansion of the water.”

“Our observational analysis matches what the numerical models have predicted — human activity could potentially impose circulation changes on the entire ocean,” said Biló. “This analysis was only possible because of the decades of collective planning and efforts by multiple oceanographic institutions worldwide.”

The study, titled “Weakening of the Atlantic Meridional Overturning Circulation Abyssal Limb in the North Atlantic,” was published in the April 19 issue of the journal Nature Geoscience. The study’s authors include: Tiago Biló, William Johns from the Rosenstiel School; Renellys Perez and Shenfu Dong from NOAA’s Atlantic Oceanographic and Meteorological Laboratory, and Torsten Kanzow from the Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research in Germany.

The research was supported by NOAA’s Global Ocean Monitoring and Observing program (100007298); NOAA’s Climate Program Office, Climate Observations and Monitoring, and Climate Variability and Predictability programs (NOFO NOAA-OAR-CPO-2021-2006389), U.S. National Science Foundation (grants OCE-1332978 and OCE-1926008), the European Union’s Horizon 2020 Research and Innovation Program (grant 821001 (SO-CHIC), and the Deutsche Forschungsgemeinschaft German Research Foundation project number 274762653), with additional NOAA Atlantic Oceanographic and Meteorological Laboratory support.

Graphic by Nicole Bozkurt on Atlantic Meridional Overturning Circulation
Graphic by Nicole Bozkurt on Atlantic Meridional Overturning Circulation

This piece was originally published at https://news.miami.edu/rosenstiel/stories/2024/04/warming-of-antarctic-deep-sea-waters-contribute-to-sea-level-rise-in-north-atlantic-study-finds.html.

Sign up for The Invading Sea newsletter by visiting here. If you are interested in submitting an opinion piece to The Invading Sea, email Editor Nathan Crabbe at ncrabbe@fau.edu. To learn more about sea-level rise, watch the video below.

Tags: AntarcticaAtlantic Meridional Overturning Circulation (AMOC)Atlantic OceanDeepTNational Oceanic and Atmospheric Administrationocean temperaturessea-level riseSouthern OceanUniversity of Miami
Previous Post

FAU faculty member presents art project at Fifth National Climate Assessment conference

Next Post

Eco-learning on the go: How MODS’ STEMobile is cultivating tomorrow’s environmental stewards 

Next Post
The MODS STEMobile delivers hands-on STEM education across South Florida. (Photos courtesy of the Museum of Discovery and Science)

Eco-learning on the go: How MODS' STEMobile is cultivating tomorrow's environmental stewards 

Twitter Facebook Instagram Youtube

About this website

The Invading Sea is a nonpartisan source for news, commentary and educational content about climate change and other environmental issues affecting Florida. The site is managed by Florida Atlantic University’s Center for Environmental Studies in the Charles E. Schmidt College of Science.

 

 

Sign up for The Invading Sea newsletter

Sign up to receive the latest climate change news and commentary in your email inbox by visiting here.

Donate to The Invading Sea

We are seeking continuing support for the website and its staff. Click here to learn more and donate.

Calendar of past posts

May 2024
S M T W T F S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Apr   Jun »

© 2022 The Invading Sea

No Result
View All Result
  • News
  • Commentary
  • Multimedia
  • Public opinion
  • About

© 2022 The Invading Sea

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In